Ocean Exploration in Time and Space

Tommy Dickey
University of California, Santa Barbara
Why Ocean Observatories?

- Expeditionary mode has very limited ability to quantify change
- Observatories are common and valuable on continents, but thus far are rare in the oceans
- New wave of thought - Expert views in reports:
 - NRC’s Illuminating the Oceans
 - President’s Ocean Explorations Panel
 - NRC’s Ocean Exploration Panel

J. Orcutt
Observatory Strengths

- Only way to observe abrupt changes, moderate to high frequency phenomena, and transients
- Key long-term variables often have low signal-to-noise ratios and require long-term and high frequency observations

J. Orcutt
Changes in Atmospheric CO$_2$

Keeling and Whorf, 2000

Petit et al., 1999

D. Karl
ATMOSPHERE–OCEAN INTERACTIONS IN THE NORTH PACIFIC OCEAN

D. Karl
Processes: Sampling in Time and Space

Dickey, 2002
DEOS - Three Elements

- Plate Scale - e.g. NEPTUNE
 - Fiber optic cabled
 - Substantial seafloor power
- Coastal Observatories – LEO-15 and others
 - Fiber optic and mooring
 - Significant bandwidth/power
- Global Network - Moorings
 - Long time series
 - High bandwidth telemetry/seafloor power

J. Orcutt
LEO Instrumentation Used for the 2000-2001 Experiment
Bermuda Testbed Mooring Time Series

Dickey et al., 1998a, 2001a
Events at the Bermuda Testbed Mooring Site

Dickey et al., 2001a; McNeil et al., 1999
Autosub: Near Bermuda Testbed Mooring Site

Griffiths, Knap, and Dickey, 2000
Dickey

Sargasso Sea Ocean Observatory
Global Thermometry Network

J. Orcutt
Draft Map of Pilot Time Series Observatory System

Time Series Science Team, Ocean Observation Panel for Climate
Data Assimilation

Dickey, 2002
Some Challenges

- New and more sensors and systems
- More platforms of various types
- Program coordination and data synthesis
- Stable funding base
For further information, surfs up in Santa Barbara!
www.oapl.ucsb.edu
email:
tommy.dickey@oapl.ucsb.edu

Special thanks to John Orcutt and Dave Karl