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Abstract. Photosynthetic CO2 uptake by oceanic phyto-
plankton and subsequent export of particulate organic car-
bon (POC) to the ocean interior comprises a globally sig-
nificant biological carbon pump, controlled in part by the
composition of the planktonic community. The strength and
efficiency of this pump depends upon the balance of particle
production in the euphotic zone and remineralization of those
particles in the mesopelagic (defined here as depths between
150 and 300 m), but how these processes respond to climate-
driven changes in the physical environment is not completely
understood. In the Sargasso Sea, from∼1996–2007, we have
observed a decade-long> 50% increase in euphotic zone
integrated autotrophic biomass (estimated from chlorophyll
TChl-a), prokaryotic phytoplankton, primary production and
shallow (150 m) POC export coinciding with a shift in the
mean phase of the winter North Atlantic Oscillation (NAO)
from consistently positive to neutral but variable. During this
same period mesopelagic POC flux attenuation has doubled
such that carbon sequestration below 300 m, the maximum
winter/spring ventilation depth, has not changed. The in-
creased mesopelagic POC attenuation appears mediated by
changes in plankton community composition and metabolic
activity in both the euphotic and mesopelagic zones. These
changes are counter to extant hypotheses regarding inter-
relationships between phytoplankton community composi-
tion, productivity and carbon export, and have significant im-
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pacts on how the Sargasso Sea ecosystem, at least, is mod-
eled. Moreover, these time-series observations suggest that
processes in the euphotic zone and mesopelagic are tightly
coupled and should be considered together in future research.

1 Introduction

Marine phytoplankton are responsible for approximately
50% of global primary production (Field et al., 1998), most
of which occurs in the oligotrophic ocean gyres, and so even
small variations in primary production can have significant
impacts on the global oceanic carbon cycle. A fraction of
this production is sequestered in the ocean interior through
both active and passive settling of particulate material and
has been termed the biological carbon pump (Volk and Hof-
fert, 1985). Globally, the oceanic biological carbon pump
sequesters∼2.5 Pg C y−1 from the surface ocean (e.g., Gru-
ber and Sarmiento, 2002). The strength and efficiency of the
biological carbon pump in a given oceanic regime are con-
trolled by a complex array of processes involving the produc-
tion of particulate organic carbon (POC) in the euphotic zone
and its remineralization with depth through the mesopelagic
zone (Buesseler et al., 2007; Neuer et al., 2002) (here de-
fined as 150–300 m). Phytoplankton diversity plays a central,
but debated, role in POC production and carbon export effi-
ciency. For example, mineral-ballasted phytoplankton like
diatoms and coccolithophores are thought to disproportion-
ately enhance the strength and efficiency of carbon export
due to their mineral frustules which enhance sinking rates
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thereby reducing contact time in the upper ocean (e.g., Arm-
strong et al., 2002; Michaels and Silver, 1988). In contrast,
it has been suggested that all phytoplankton, even picoplank-
ton, contribute to carbon export in direct proportion to their
contributions to primary production (Richardson and Jack-
son, 2007). A key point in reconciling these two disparate
hypotheses is that the mechanisms of export differ; i.e., ex-
port of mineral phytoplankton is likely dominated by grav-
itational sinking while export of picoplankton are packaged
into larger particles via grazing and/or aggregation. Resolv-
ing these two hypotheses is important to predicting future
carbon sequestration in the oceans given that the oligotrophic
gyres are dominated by non-mineral ballasted phytoplankton
and account for∼60% of global carbon export.

In addition to complexities of phytoplankton diversity on
the spatial scale, temporal variability needs to be consid-
ered given the non-steady state conditions characterized by
the present-day increase of atmospheric CO2 and accompa-
nying increase of global ocean temperatures and stratifica-
tion. Oligotrophic gyres previously considered “static” on
a year-over-year basis, due largely to a lack of data, are
now recognized to display substantial temporal variability
(e.g., Karl et al., 2002; Maranon et al., 2003). Behrenfeld
et al. (2006) show that global ocean net primary produc-
tion and phytoplankton biomass (from 1997–2006), driven
largely by changes within the oligotrophic gyres, decreased
from 1999–2006 in response to increased water column strat-
ification; evaluated as an increase in the multivariate El niño
index. In contrast, or perhaps exemplifying the confound-
ing temporal/spatial interactions, Karl et al. (2001) show that
primary production and phytoplankton biomass in the North
Pacific Subtropical Gyre, at the Hawaii Ocean Time-series
and VERTEX sites, increased over the past three decades in
response to a hypothesized increase in stratification, which
was linked to a shift in the phase of the Pacific Decadal
Oscillation (PDO). Moreover, just within the two decades
of the Hawaii Ocean Time-series (HOT) program, Corno et
al. (2007) have observed a continued trend for increasing pri-
mary production that also has been linked to the ENSO/PDO
and changes in stratification. Corno et al. (2007) also have
observed that phytoplankton biomass (TChl-a) and primary
production increased in concert suggesting the increased pri-
mary production was due to increasing biomass rather than
changes in the physiology of the resident autotrophs. This
increase in primary production and biomass occurred with a
shift from larger eukaryotes to smaller prokaryotes, but data
are lacking for this site to evaluate consequent changes in the
biological carbon pump on the same three decade timescale.
Recent modeling activities have attempted to capture these
trends in euphotic zone integrated primary production at both
time-series sites (Saba et al., 2010) with limited success,
thus highlighting the need to gain better understanding of
processes below the depths which satellites can see into the
ocean.

For the past two decades biogeochemical measurements
have been made in the northwestern Sargasso Sea as part of
the Bermuda Atlantic Time-series Study (BATS; Steinberg et
al., 2001). The Sargasso Sea, on an annual basis, is a net sink
(net air-to-sea flux) for CO2 due to the strength of biological
carbon sink during the winter/spring period which offsets the
strong CO2 source in the summer (Bates, 2007). Using the
Sargasso Sea as a natural laboratory, we examined temporal
variability of phytoplankton abundance, primary production,
carbon export and its attenuation below the euphotic zone
to evaluate the strength and efficiency of the winter/spring
biological carbon pump in response to a shift in the phase of
the dominant climate mode for the North Atlantic, the North
Atlantic Oscillation.

2 Materials and methods

2.1 Sampling scheme and biogeochemical stock and
rate measurements

Monthly Hydrographic and biogeochemical measurements
have been collected at the BATS site since October 1988.
Starting in January 1990, biweekly measurements have been
made during the winter/spring bloom period (January to
April) for all measurements except POC gravitational flux,
which are measured just once monthly. This sampling
scheme results in up to 4–6 data points during each annual
winter/spring bloom period, the time period considered in
this retrospective analysis. The BATS data are available from
the Bermuda Institute of Ocean Sciences/Bermuda Atlantic
Time-series Study web page (http://bats.bios.edu/). Specific
details and information for all of the methods can be found
on the web page as well under BATS Information/Methods,
but a brief description of each method relevant to this partic-
ular work is given below.

Irradiance data were collected as part of the Bermuda
BioOptics Project (BBOP). Underwater irradiance data were
collected using the Multi-channel Environmental Radiometer
(MER) from 1992 to 1999 and the Satlantic Profiling Multi-
channel Radiometer (SPMR) from 2000 to 2007. PAR was
computed using wavelength integration of irradiance (Ed)
spectrum using Planck’s law to estimate spectral quantum
flux from energy. The 1% PAR depth was interpolated from
valid surface PAR and vertical profiles.

Dissolved oxygen is sampled before all other measure-
ments to avoid compromising the samples by atmospheric
gas exchange. Oxygen samples are drawn into individual
BOD flasks and analyzed using an automated Winkler titra-
tion method (Williams and Jenkinson, 1982). In 1993 the
original system was replaced with a UV endpoint detector
system that substantially increased system precision.

Samples for NO−3 , NO−

2 and PO−3
4 were gravity filtered

through 0.8 µm Nuclepore polycarbonate filters using in-line
polycarbonate filter holders, then frozen (−20◦C) in HDPE
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bottles until analysis (Dore et al., 1996). Tests of frozen ver-
sus refrigerated samples have indicated no significant differ-
ence between storage methods (Dore et al., 1996). Nitrite
concentrations were subtracted from combined NO−

3 /NO−

2
concentrations to estimate NO−

3 concentrations. Nutrient
samples prior to∼2003 were analyzed on a modified Techni-
con Autoanalyzer and samples post∼2003 were analyzed on
an Alpkem Flow Solution IV; both instrumental setups have
comparable sensitivity and method detection limits. During
every sample run, several commercially available certified
standards, Ocean Scientific International and Wako Chemi-
cal, were analyzed to maintain the generation of high quality
data, as well as “standard water” from 3000 m which serves
as an internal standard.

Bulk phytoplankton biomass (TChl-a) and specific acces-
sory pigments were analyzed by HPLC (from 1990–2004 us-
ing the method of Bidigare (1991), and from 2005–2007 us-
ing the method of Van Heukelem and Thomas (2001). For
the sample volumes filtered, both methods have a detec-
tion limit of ∼1 ng and compare favorably with each other.
Whole water samples (4 L) were filtered onto 47 mm GF/F
filters using polycarbonate in-line filter holders under a low
vacuum pressure (< 100 mm Hg) and then stored in liquid
nitrogen until analysis on shore. In the laboratory, pig-
ments were extracted by placing the filter in 5 ml of 100%
acetone (the retention volume of the filter is approximately
0.8 ml resulting in a final acetone concentration of∼90%
and, a final extraction volume of 5.8 ml) and allowed to ex-
tract overnight at−20◦C. Samples (1 ml) were eluted on
a reverse-phase C18 column (250× 4.6 mm, 5 µm particle
size, ODS-2 Spherisorb C18 column) using a three-step mo-
bile phase program. The mobile phases are as follows: (a)
Eluent A – 80:20 v:v, methanol: 0.5 M ammonium acetate,
pH 7.2; (b) Eluent B – 90:10 v:v, acetonitrile: water, and; (c)
Eluent C – ethyl acetate. Sample peak identities were de-
termined based upon retention times of pure standards and
algal extracts of known pigment composition. The HPLC
system was calibrated with commercially obtained pigment
standards where the concentrations were determined spec-
trophotometrically in the appropriate solvent using recom-
mended extinction coefficients (e.g., Bidigare, 1991). Sam-
ple peaks were quantified using a response factor generated
for each pure pigment standard.

HPLC pigment concentrations were converted to relative
taxonomic phytoplankton distributions using the equations
of Letelier et al. (1993), which have been shown to accu-
rately reflect phytoplankton populations, as determined by
electron microscopy, at all depths in this region of the Sar-
gasso Sea (Anderson et al., 1996). The taxonomic groups
and signature pigments used are as follows: Cyanobacte-
ria (excluding Prochlorophytes, i.e.,Synechococcus), zeax-
anthin; Haptophytes, 19′-hexanoyloxyfucoxanthin; and Di-
atoms, fucoxanthin. These are the only groups that showed
significant changes in absolute biomass and/or relative abun-

dance and therefore are the only groups considered in this
manuscript. Samples for picoplankton enumeration have
been collected on each core BATS cruise from October 2001
to present. Samples are collected from 9 depths between 0
and 140 m, fixed with paraformaldehyde (0.5% final con-
centration), stored at∼4◦C for 1–2 h, before long term
storage in liquid nitrogen. Samples were analyzed on a
Becton Dickinson (formerly Cytopeia Inc.) Influx cytome-
ter using a 488 nm blue excitation laser, appropriate Chl-
a (692± 20 nm) and phycoerythrin (580± 15 nm) bandpass
filters, and was calibrated daily with 0.53 µm and 2.88 µm
fluorescent microbeads (Spherotech Inc. Libertyville, Illi-
nois, USA). Each sample was run for 4–6 min (∼0.2–0.3 ml
total volume analyzed), with log-amplified Chl-a and phy-
coerythrin fluorescence, and forward and right-angle scat-
ter signals recorded. Data files were analyzed from two-
dimensional scatter plots based on red or orange fluorescence
and characteristic light scattering properties (e.g., DuRand
and Olson, 1996) using FCS Express 3.0 (DeNovo Software
Inc. Los Angeles, California, USA). Pico-autotrophs were
identified as eitherSynechococcusor Prochlorococcusbased
upon cell size and the presence or absence of phycoerythrin,
respectively. Based upon these gating criteria, the number of
cells in each identified population was enumerated and con-
verted to cell abundances by the volume-analyzed method
(Sieracki et al., 1993). Precision of triplicate samples was
< 5% for cell concentrations> 200 cells ml−1.

Zooplankton were collected using a vertically integrated
(0–200 m) oblique tow (Madin et al., 2001). After collection,
samples were fixed with buffered formaldehyde (∼4%), split
using a Folsom Splitter, with one-half split sieved through
sequential nitex screens to separate specific size fractions.
Size-fractionated samples, were washed onto a smaller nitex
screen, rinsed with buffered milli-Q water to remove salt and
dried to constant weight.

Rates of primary production, 250 ml incubations, were cal-
culated from the autotrophic incorporation of H14CO−

3 into
autotrophs (i.e., particles> 0.7 µm) using an assumed ratio
of total inorganic carbon present to radiocarbon added. For
each sample depth, H14CO−

3 was added to triplicate light bot-
tles, a single dark bottle and a singleT0 bottle with a sample
for total added activity removed from theT0 bottle. Samples
were incubated in situ from local dawn to dusk (∼12 h) at the
depths from which they were originally collected. Rates of
primary production were calculated from the mean light bot-
tle value corrected for the dark bottle value, and integrated to
a depth of 140 m.

Bacterial production (BP) was measured using [3H-
methyl] thymidine incorporation during a 2–3 h dark incu-
bation at in situ temperatures. A median thymidine con-
version factor of 1.63×1018 cells mol−1 thymidine and cell-
specific C-biomass value of 4.5 fg C cell−1 (Carlson et al.,
1996) were used to convert thymidine incorporation rates to
carbon-based bacterial production estimates using standard
equations (Carlson and Ducklow, 1996). Bacterial Carbon
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Demand (BCD) was estimated by dividing bacterial produc-
tivity by a bacterial growth efficiency of 0.14 (Carlson and
Ducklow, 1996). Prior to 1998, only several years of data are
available (Carlson et al., 1996).

The POC sinking flux from the euphotic zone was quanti-
fied using surface-tethered particle interceptor traps (Knauer
et al., 1979). Traps were deployed for 3–4 days and filled
with a brine solution (50 g NaCl L−1 above ambient seawa-
ter) containing formaldehyde (0.7% v v−1, final concentra-
tion). No accounting was made for dissolution of partic-
ulate material post collection in the trap, which can be a
highly variable fraction that based upon literature data av-
erages∼30% for carbon (Antia, 2005). After manual re-
moval of swimmers, samples were dried to constant weight
at 65◦C, fumed overnight in a desiccator saturated with HCl
fumes, re-dried at 65◦C, and then analyzed using a Control
Equipment Model 240XA CHN elemental analyzer (Knap et
al., 1997). Carbon and nitrogen fluxes were calculated from
the mass of material captured in the trap, its surface area and
deployment length.1POC was calculated as the difference
in average POC fluxes at 150 and 300 m. Mesopelagic trans-
fer efficiency was calculated as the ratio of POC fluxes at
300 m/150 m (Buesseler et al., 2007).

2.2 Data processing

In this study the entire focus is on the winter/spring pe-
riod that is defined as the period from 1st January to 30th
April in a given year. Generally there are 4–6 sampling
efforts during this period each year and each is consid-
ered independently in estimates of biogeochemical changes
over time based upon the observation that the de-correlation
timescale is roughly 15 days in this region of the Sargasso
Sea (Dickey et al., 2001). All profile data are integrated
to 140 m which is∼0.1% PAR level (e.g., Siegel et al.,
2001) and the deepest sampling depth that does not ex-
ceed the 150 m sediment trap depth. Where data are inte-
grated over different depth ranges, this is stated. NAO data
were downloaded from NCAR’s Climate Analysis Section
(http://www.cgd.ucar.edu/cas/jhurrell/indices.html).

Macronutrients consumed during the course of each win-
ter/spring bloom period were calculated as the difference
between measured concentrations averaged for Novem-
ber/December (before bloom initiation) and April/May (af-
ter bloom termination). November/December were chosen as
the pre-bloom months as N2-fixation is past its summer max-
imum (Orcutt et al., 2001) and mixed layer depths (MLDs)
were shallower than the euphotic zone. Mesoscale eddies
not withstanding, the balance between nutrient inputs, con-
sumption and remineralization should be relatively stable
and therefore a reasonable estimate of the pre-winter/spring
bloom nutrient pool can be estimated. May was chosen as the
post-bloom month as MLDs have shoaled to less than the eu-
photic zone depth and measured nutrient concentrations rep-
resent what was consumed, in a net sense, with minimal bias

associated with new N inputs by N2-fixation that increase
throughout the summer. The density surface on which nutri-
ent concentrations were estimated for this calculation was the
σθ = 26.27−26.32 kg m−3. This isopycnal range was chosen
because it is shallower than the core of the 18◦C mode water,
and therefore minimally impacted by non-local productivity
and nutrient consumption (Palter et al., 2005). These isopy-
cnals, during months of active convection and mixed layer
depths> 100 m, are the source waters for nutrients in the
winter/spring bloom.

Total community metabolism was estimated from the cal-
culation of apparent oxygen utilization (AOU). AOU calcu-
lations are compromised by deep mixing and therefore are
usually calculated on an annual basis, after seasonal strati-
fication has occurred. In this manuscript, data collected on
cruises between when the seasonal mixed layer shallowed to
< 200 m and the end of April were used and therefore do
not include any heterotrophic metabolism during the period
of deepest convection. The threshold of 200 m was chosen
for the MLD so that AOU could be determined over a longer
portion of the winter/spring period. For these cruises, AOU
was calculated as follows. An oxygen anomaly was calcu-
lated assuming saturation at the observed sample tempera-
ture and salinity. The oxygen anomaly was integrated from
200–300 m and plotted as a function of day of the year. A
Model I linear regression was applied to the data and the re-
sulting slope and intercept were used to calculate the inte-
grated AOU at the beginning of the shortened data record for
each year and at 30 April (day of year 122). The difference
between these two values was taken as the AOU associated
with the material remineralized during the period of interest
in this study. Oxygen data before 1993 were analyzed using a
different detection system and therefore only data post-1993
are used in this analysis for consistency.

Statistical analyses were done using the routines in Sigma-
Stat 3.5 (Systat Software Inc, San Jose, California). Data
streams used for correlation analyses were averaged by
month so that each pair of variables had the same number
of measurements.

3 Results

3.1 Particle production in the euphotic zone

In addition to the seasonal pattern in Sargasso Sea bio-
geochemical processes (Steinberg et al., 2001), underlying
multi-year trends in biological carbon pump parameters are
apparent and statistically robust. The data presented in this
manuscript are only from the winter/spring period each year
and therefore no seasonal detrending of the data was per-
formed. Over the 17-year data record presented here, eu-
photic zone (0–140 m) integrated stocks of total chlorophyll
a (TChl-a), suspended particulate organic carbon (POC), ra-
tes of primary production and shallow (150 m) POC ex-
port all display significant (least squares Model 1 linear
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Table 1. Rates of change in biogeochemical parameters in the Sargasso Sea. Statistics provided for the entire period, as well as divided
up into the two periods of interest as defined by the phase of the winter NAO index.n/s = no significant change. Data in the “Period
Change” column are given as the absolute change, in appropriate units, from the beginning of the time period as well as the percent change
in parentheses.

Parameter Time period Slope & Std. Error Period Change p-valuer2 n

Int. TChl-a (0–140 m; mg m−2)

1990–1995 1.34± 0.51 +8.04 (∼34%) 0.01 0.11 50
1996–2007 1.71± 0.47 +18.7 (∼62%) < 0.01 0.59 58
1990–2007 1.13± 0.16 +19.2 (∼82%) < 0.01 0.33 108

Int. Suspended POC (0–140 m; mmol C m−2)

1990–1995 0.20± 0.33 n/s 0.56 0.01 58
1996–2007 0.87± 0.05 +8.6 (∼35%) < 0.01 0.60 51
1990–2007 0.64± 0.10 +10.9 (∼44%) < 0.01 0.26 109

Int. Primary Production (0–140 m; mmol C m−2 d−1)

1990–1995 0.01± 0.06 n/s 0.79 0.01 53
1996–2007 2.95± 0.76 +32.5 (∼98%) < 0.01 0.63 56
1990–2007 0.85± 0.42 +14.5 (∼44%) 0.04 0.04 109

POC flux @ 150 m (mmol C m−2 d−1)

1990–1995 0.01± 0.12 n/s 0.97 0.01 36
1996–2007 0.18± 0.08 +1.95 (∼66%) 0.05 0.38 36
1990–2007 0.12± 0.04 +2.1 (∼71%) < 0.01 0.12 72

POC flux @ 300 m (mmol C m−2 d−1)

1990–1995 0.00± 0.06 n/s 0.99 0.00 36
1996–2007 −0.03± 0.06 n/s 0.62 0.01 36
1990–2007 0.02± 0.02 n/s 0.47 0.01 72

regression, P< 0.05) increases in winter/spring values of
> 44% (Fig. 1, Table 1). Increases in time however, were
not uniform over the entire record. Indeed, TChl-a was the
only parameter of those four that showed a significant in-
crease from 1990–1996, albeit with a lower slope than the
later part of the record (Table 1). Moreover, the TChl-a data
for winters of 1995 and 1996 contribute disproportionately
to the increase observed for the entire 1990–1996 period. All
four parameters displayed increases with time from 1996–
2007 with slopes that were much higher than for the 1990–
1996 period or the entire dataset (Table 1).

Integrated TChl-a, primary production, and shallow POC
export from 1996–2007, when the overall increase was
greatest, were all significantly correlated with each other
(Spearman Rank Order Correlation, all pairwise comparisons
P< 0.05, N=15 or 17 depending upon comparison, Table 2),
indicating a coherent euphotic zone response to a broader
external forcing driven by increases in autotroph abundance.
Corno et al. (2007), for the subtropical North Pacific, found
that TChl-a normalized primary production (i.e., the assim-
ilation number) remained virtually constant suggesting the
increase in primary production was due almost exclusively
to the increase in biomass and not a change in physiolog-
ical condition. Supporting the observed year-over-year in-
crease in TChl-a, primary production and POC export was
increasingly greater consumption of NO−

3 and PO−3
4 (Fig. 2).

The net N:P drawdown ratio on these isopycnals ranged from
27 to 43 mol:mol, consistent with particulate bulk N:P ra-
tios in this region (Ammerman et al., 2003) and N:P ratios
of cyanobacteria (Bertilsson et al., 2003) that contribute sub-
stantially to total autotrophic carbon during the winter/spring
(DuRand et al., 2001).

The increase in TChl-a was not uniform across all tax-
onomic groups (Fig. 3, Table 3). Diatoms, an impor-
tant mineral ballasted phytoplankton group, have been de-
clining steadily with significant reductions (Mann-Whitney
Rank Sum, P<0.05) in both absolute and relative abundance
(Fig. 3a, Table 3). Absolute haptophyte biomass, a frac-
tion of which is attributed to the coccolithophoreEmiliania
huxleyiin this region (Haidar and Thierstein, 2001), has not
significantly changed over time (Mann-Whitney Rank Sum,
P=0.55; Fig. 3b, Table 3), but their relative contribution to
TChl-a has been reduced by approximately half due to in-
creases inSynechococcusabundance over the past decade.
Absolute pigment biomass ofSynechococcushas increased
by∼45% over the past decade (Fig. 3c, Table 3) with an asso-
ciated increase in relative abundance from∼25% to∼40% of
TChl-a (Fig. 3c, note the difference in scale between the two
y-axes, Table 3). Euphotic zone integratedSynechococcus
cell abundance, determined by analytical flow cytometry, has
increased 3-fold since 2002 supporting the general trend in
the HPLC data. Flow cytometric data on phycoerythrin and
Chla fluorescence per cell forSynechococcussuggests a co-
incident decrease for both pigments over the record (Lomas,
unpubl. data). Because the changes in pigment fluorescence
are comparable for both pigments, the use of a fixed pigment
ratio for the HPLC analysis remains valid, but it does create
a disconnect between changes in cell numbers and pigment
biomass estimates. A full explanation of these data is both
premature and outside the scope of this manuscript. Using
published estimates of cell carbon quotas and C:Chl-a ra-
tios for Synechococcus(Bertilsson et al., 2003), the increase
in Synechococcuscell abundance accounts for>50% of the
TChl-a increase.
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Table 2. Spearman Rank Correlation table of selected biogeochemical and environmental parameters. Within each cell, first row = correlation
coefficient and second row = p-value. For each correlation, N = 15 to 17.δNO−

3 andδPO−3
4 are NO−

3 and PO−3
4 drawn down during the

course of the winter/spring bloom; PProd = euphotic zone integrated primary production;δσT = difference inσT between 200 m and 5 m
values. All other parameters as defined in the text. Only those correlations that are P≤ 0.1 are shown. P≤ 0.1 – normal font, P≤ 0.05 – italics,
P≤ 0.01 – bold.

MLD δNO−

3 δPO−3
4 Teff PProd TChl-a POC flux MLD-CV δσθ

NAO – – – – −0.48 −0.61 −0.42 – –
0.05 <0.01 0.08

MLD – – −0.39 – – – – –
0.10

δNO−

3 0.62 – – 0.58 0.63 −0.67 –
0.01 0.03 0.01 <0.01

δPO−3
4 −0.52 0.41 0.65 – – −0.42

0.03 0.10 <0.01 0.10
Teff −0.44 −0.61 −0.46 – –

0.08 <0.01 0.07
PProd 0.51 0.60 −0.49 –

0.04 0.01 0.05
TChl-a 0.56 −0.48 –

0.02 0.05
POC flux −0.65 –

<0.01
MLD-CV –

3.2 Particle remineralization in the mesopelagic

This shift in the relative abundance of specific phytoplank-
ton groups after ca. 1996 appears to have altered the magni-
tude and biological lability of the exported particulate matter.
The significant increase in shallow (150 m) POC export did
not result in increased POC export to the deeper mesopelagic
zone (>300 m). The∼60% increase in POC export at 150 m
has been countered by a significant decrease in mesopelagic
transfer efficiency (defined asTeff ; Fig. 4a) such that POC
fluxes at 300 m remained statistically identical over the entire
time-series (Fig. 4b, Table 1). This observation is not con-
founded by changes in the relative depths of the traps (where
particles are captured) and euphotic zone (where some parti-
cles are produced) as there has only been a∼2 m shoaling of
the 1% light depth over the past two decades (86.6± 10.4 m
from 1992 to 1999 and 84.8± 11.6 m from 2000 to 2007;
Buesseler and Boyd, 2009). The coherence of increased pri-
mary production, POC flux at 150 m and attenuation of this
flux (Teff) with depth suggests that ecosystem pathways in
the mesopelagic respond on similar timescales and propor-
tionately with euphotic zone pathways (Spearman Rank cor-
relation, P≤ 0.07 for all pairwise comparisons; Table 2).

The absolute magnitude of POC attenuation in the
mesopelagic zone (150–300 m) was greater after ca. 1996
than in the prior decade (Student’s t-test with unequal vari-
ance, P<0.01; Fig. 4a). This increase in POC remineraliza-
tion was associated with a significant (Student’s t-test with
unequal variance, P<0.01; Fig. 4d) increase in apparent oxy-

gen utilization (AOU; Fig. 4d) suggesting that POC attenu-
ation may be due to increased mesopelagic metabolic activ-
ity (Steinberg et al., 2008b). The temporal patterns inTeff
and AOU are different and could suggest other explanations.
Substantial dissolution of particulate material post-collection
in the trap tubes can occur, averaging∼30% for carbon (re-
viewed by Antia, 2005). The reasonably monotonic trend
of a phytoplankton community increasingly dominated by
small prokaryotes might result in the dissolution of an in-
creasingly large fraction of the trap POC. ThereforeTeff, as
it was calculated from trap measurements, might reflect dis-
solution in the trap as much as metabolic consumption of
POC. The observed step-change in AOU reflects complica-
tions in the calculation itself (see methods for details) as
well as a more rapid change in system response. Reconciling
the temporal response of these two estimates of mesopelagic
carbon attenuation would require more focused process re-
search, particularly on the response of bacteria versus meta-
zoans with time.

Mesopelagic temperatures have been warming at
∼0.004◦C y−1, and while significant for stratification, this
change is too small, even over a decade, to affect metabolic
rates of individual organisms (which have aQ10 of ∼2
for many physiological processes; e.g., Eppley, 1972).
Therefore the increase in metabolic activity is more likely
associated with an increase in heterotrophic biomass or
changes in its composition. Mesopelagic Bacterial Carbon
Demand (BCD) has decreased significantly (least squares
Model 1 linear regression, P<0.01, Fig. 4d) from 1996 to
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Table 3. Rates of change in phytoplankton composition parameters in the Sargasso Sea. Statistics provided for the entire period, as well as
divided up into the two periods of interest as defined by the phase of the winter NAO index.n/s = no significant change. Data in the “Period
Change” column are given as the absolute change in appropriate units and as percent increase from the beginning of the time period.

Parameter Time period Slope & Std. Error Period Change (%) p-valuer2 n

Chladiatom (mg m−2)

1990–1996 −0.03± 0.01 −0.15 (∼74%) 0.05 0.07 58
1996–2007 −0.03± 0.01 −0.24 (∼110%) 0.03 0.11 42
1990–2007 −0.02± 0.00 −0.34 (∼113%) < 0.01 0.53 100

Chlahapto(mg m−2)

1990–1996 0.72± 0.27 +5.06 (∼56%) < 0.01 0.12 58
1996–2007 −0.28± 0.12 n/s 0.05 0.09 42
1990–2007 −0.07± 0.11 n/s 0.55 0.02 100

ChlaPro (mg m−2)

1990–1996 −0.03± 0.08 n/s 0.70 < 0.01 58
1996–2007 0.07± 0.09 n/s 0.43 0.02 42
1990–2007 0.06± 0.05 n/s 0.25 0.08 100

ChlaSyn (mg m−2)

1990–1996 4–0.10± 0.15 n/s 0.50 0.07 58
1996–2007 0.55± 0.17 +3.85 (∼46%) < 0.01 0.30 42
1990–2007 0.34± 0.10 +5.78 (∼64%) < 0.01 0.42 100

Int. Prochlorococcus(×1011cells m−2) 2002–2007 1.77± 1.6 n/s 0.28 0.04 30
Int. Synechococcus(×1011cells m−2) 2002–2007 5.09± 1.36 +26.5 (∼170%) 0.01 0.33 30

Fig. 1. Time-series, data from January to April each year, of bio-
logical carbon pump components in the Sargasso Sea.(a) Integrated
(0–140 m) HPLC TChl-a, (b) integrated (0–14 m) in situ primary
production and(c) sediment trap POC flux at 150 m. In all panels,
open squares are data for January through April of each year. The
filled symbols are the mean (± std. dev.) of the data for each win-
ter/spring period. The solid lines in each panel are the least squares
Model 1 linear regression and 95% confidence intervals (dashed
line). All linear regressions are significant, P≤ 0.05.

Fig. 2. Time-series plots of(a) [NO−

3 ] and (b) [PO−3
4 ] con-

centrations before (Nov/Dec, filled circles) and after (May, open
circles) the winter/spring period on isopycnal bandσθ = 26.28–
26.32 kg m−3. Lines are drawn to the data to depict trends and are
not statistical fits.

2007 due to decreases in bacterial abundance. Data prior to
1996 are too few to support extensive analysis. This decrease
in free living BCD is substantial as estimates have decreased
from roughly twice the POC attenuation to one-half these
values. As a result, the fraction of AOU associated with
biota other than free-living bacteria must have increased;
most probably particle-attached bacteria (which our method
doesn’t account for) and zooplankton. At this time there
is no data to directly evaluate the former, although it is
hypothesized that attached bacterial activity would increase
with increased POC flux.

www.biogeosciences.net/7/57/2010/ Biogeosciences, 7, 57–70, 2010



64 M. W. Lomas et al.: Increased ocean carbon export in the Sargasso Sea

Fig. 3. Time-series of phytoplankton taxonomic groups deter-
mined from HPLC pigment analysis as described in the text.(a)
diatoms,(b) haptophytes, and(c) Synechococcus. Phytoplankton
group biomass estimates (0–140 m; mg m−2; open bars) are given
as the mean (± std. dev.) for January to April of each year and their
percent contribution to TChl-a (filled circles). (d) IntegratedSyne-
chococcusabundances (0–140 m;×1011cells m−2) as determined
by direct analytical flow cytometric counts. The solid line through
data from 2002 to 2007 is the least squares Model 1 regression, sig-
nificant at the P< 0.01 level, and predicted 95% confidence intervals
(dashed lines). Data from 1991 to 1994 were taken from DuRand et
al. (2001), as available on the CD that accompanied the Deep-Sea
Res. Pt. II, 48(8/9) in which that data were originally published.

Total epipelagic mesozooplankton biomass in the Sar-
gasso Sea (e.g., 200–500 µm size class), has increased ap-
proximately 2.5 fold since 1994 (Steinberg et al., 2008a;
Fig. 5). Too few data are available prior to 1994 to deter-
mine if there was a different trend in zooplankton biomass
in the early 1990’s. As mesozooplankton metabolic rates
and production generally scale with biomass (e.g., Roman
et al., 2002), the increased mesozooplankton biomass would
equate to increased metabolic demand and could contribute
to the observed increase in AOU. From data presented
in Roman et al. (2002), we calculate an average (1994–
1997) total mesozooplankton respiration rate (and there-
fore approximate contribution to AOU) at BATS, integrated

from 0–150 m, of∼2.2 mmol C m−2 d−1, a value slightly
larger than the1POC observed during the same timespan
(Fig. 4). We repeated the calculations outlined in Roman
et al. (2002) for the longer dry weight biomass record (all
size classes, Steinberg et al. 2008a) by converting to carbon
biomass using Madin et al. (2001) and assuming a constant
growth rate with time (0.15 d−1 determined by Roman et al.
2002). The increase in biomass would increase mesozoo-
plankton respiration rates to∼5.5 mmol C m−2 d−1 by the
end of the time-series; this change in respiration over time,
∼3.3 mmol C m−2 d−1, is similar to the change in AOU be-
fore and after∼1996 – 4.1 mmol C m−2 d−1. Based on this
back-of-the-envelope calculation, it appears that the change
in zooplankton biomass and resultant respiration may ac-
count for a substantial fraction of the increase in AOU. It
is important to note however, that some of the attenuation of
POC flux may also be due to fragmentation of large aggre-
gates into smaller particles with slower sinking rates by bio-
logical processes such as particle-attached microbial activity,
zooplankton feeding, or zooplankton-induced shear (Stein-
berg et al., 2008b).

4 Discussion

This analysis of the Sargasso Sea biological carbon pump
over the past two decades suggests that this ecosystem is not
static as perhaps previously thought. The decision to sep-
arate the nearly two-decade dataset between 1995 and 1996
was not arbitrary. The primary reason is the well documented
change in the phase of the NAO in the mid 1990’s. Prior to
the winter of 1996 the wintertime NAO was consistently pos-
itive and after 1996 was variable but on average neutral (dis-
cussed later). Given the generally well established linkages
between modes of climate forcing and marine planktonic
processes (e.g., Chavez et al., 2003; Corno et al., 2007; Karl
et al., 2002) and in particular the NAO in the North Atlantic
(Irigoien et al., 2000; Oschlies, 2001), a change in plank-
tonic response was hypothesized to occur coincident with the
change in the NAO. If the transition timing is moved three
years on either side of 1996 (e.g., 1990–1993 and 1994–
2007 or 1990–1999 and 2000–2007), non-significant trends
remain non-significant and significant trends remain signif-
icant (data not shown). This suggests that the correlations
observed and discussed below are robust and not dependent
on the exact date chosen. Furthermore, a transition set at
1996 also explains the most variance in both time periods
(i.e., extending the 1990–1996 period forward in time to in-
clude more data only reduces ther2 value, and extending the
1996–2007 period back in time to include more data also de-
creases ther2 value). Regardless of the choice of transition
time point, there have been increases in biological carbon
pump parameters over time that have coincided with a de-
crease in wintertime NAO over the same timeframe.
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Fig. 4. Remineralization of sinking particulate organic carbon in the Sargasso Sea.(a) time-series of mean (± std. dev.) winter/spring
(January to April) mesopelagic transfer efficiency (Teff). Filled circles denote data from 1990 to 1996, and open circles denote the 1996 to
2007 period.(b) absolute POC flux profiles for January to April of 1997 (filled circles) and 2007 (open circles) are plotted as an example of
the change in attenuation during this period.(c) POC flux profiles normalized to 150 m fluxes for January to April of 1997 (filled circles) and
2007 (open circles).(d) Time-series of sinking particulate organic carbon loss between 150 and 300 m (1POC; black bars), 150 to 300 m
integrated bacterial carbon demand (light grey bars), and 200 to 300 m apparent oxygen utilization (dark grey bars).

Fig. 5. Time-series of daytime zooplankton biomass (mg dry
weight m−3) in the 200–500 µm size class at the BATS site. Solid
line is the least squares Model 1 regression, and the dashed lines are
the 95% confidence intervals.

4.1 Relationships between climate forcing and the
Sargasso Sea biological carbon pump

Additional physical and biogeochemical data allow an as-
sessment of possible triggers for the changing strength and
efficiency of the biological carbon pump. The most obvious
are changes in upper ocean stratification and nutrient inputs,
given that primary production in the subtropical North At-

lantic is limited by the nutrient supply rate (Maranon, 2005),
and how these may change in response to multi-year climate
oscillations. No significant changes in wintertime stratifi-
cation were apparent between the near surface and 200 m
(Fig. 6a) in contrast to changes in summer time stratification
which were large enough to drive an annual increase in strat-
ification from 1989 to 2003 (Krause et al., 2009). Estimated
MLDs consistently reached depths of 150 to 200 m, with oc-
casional mixing to 250 m (Fig. 6c); the depth of the 26.28 to
26.32 kg m−3 isopycnals from which we observed increased
nutrient drawdown during the course of the winter/spring
bloom (Fig. 2). Despite the similarity in estimated MLDs
and apparent upper ocean stratification, it is hypothesized
that there have been changes in physical forcing between the
two decades of the BATS dataset. The wintertime (Decem-
ber through March) North Atlantic Oscillation (NAO) index,
the dominant climate mode in this region (Marshall et al.,
2001), shifted from consistently positive to more neutral val-
ues starting with the winter of 1996 (Fig. 6b); negative NAO
values result in intensified midlatitude westerlies (Marshall
et al., 2001). While the depth of mixing has not changed,
the frequency of mixing in this region may have increased,
suggested by the reduction in month-to-month variability of
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Fig. 6. Time-series of upper ocean physical forcing at BATS.(a) Mean (± std. dev.)σθ (kg m−3) for near surface water (∼5 m; open circles)
and 200 m (filled circles), and the difference between the two (open squares). Solid lines are the least square Model 1 linear regression and
dashed lines are the 95% confidence intervals.(b) winter (December through March) index of the NAO.(c) Estimated mixed layer depths
using a variableσT difference criterion of 0.02 kg m−3 difference from the surface (∼5 m) value. Horizontal lines denote the depths of the
BATS sediment traps at 150, 200 and 300 m.(d) Mean mixed layer depth (bars) and the coefficient of variation within each winter (solid
line). (e)daily winter/spring wind speeds recorded at the Bermuda Airport. (e) Same as (c) but for wind speed.

estimated MLD (based upon calculated CV ofn = 4 monthly
average MLDs) taken from cruise data during the duration
of the winter/spring period (Fig. 7d). It is hypothesized
that the change in the phase of the NAO has resulted in
more continuous, but not necessarily deeper, mixing that en-
hances the supply of nutrients to the euphotic zone leading
to more efficient and greater biological nutrient utilization
(Fig. 2) and ultimately biomass accumulation (Fig. 1a). In
support of this there are coherent statistical correlations be-
tween the NAO index and all euphotic zone carbon pump
parameters (PP, TChl-a, POC flux; all P≤ 0.08; Table 2),
the strongest of which is a negative correlation (Spearman’s
Correlation,r = −0.48, P<0.02) between euphotic zone in-
tegrated primary production and the wintertime NAO index
(Fig. 7). This observation is consistent with previous findings
based upon the BATS dataset (Bates, 2001; Lomas and Bates,
2004). In addition, the MLD coefficient of variation is nega-
tively correlated with the biological carbon pump parameters
(PP, TChl-a, POC flux; all P≤ 0.05; Table 2). These findings
suggest a mechanism by which shifts in a dominant climate

mode for the North Atlantic may lead to increased produc-
tivity. It is important to point out that interactions between
climate modes and mesoscale variability and the impact on
vertical mixing at BATS is not understood, and it is possible
that the presence of different mesoscale eddy features during
the winter/spring period will modify the “convective mixing”
signal (Mourino-Carballido, 2009).

In addition to mesoscale interactions, there are non-local
impacts of changes in the NAO as well. For example, Pal-
ter et al. (2005) suggest that the phase of the NAO controls
the nutrient reservoir in the North Atlantic subtropical mode
water in a counterintuitive manner. They suggest that an
NAO negative phase during mode water formation results in
lower nutrient concentrations within the mode water which
may reduce downstream primary production dependent upon
convective mixing of nutrients from the mode water (i.e., at
the BATS site). In contrast, formation of mode water during
NAO positive phases results in higher nutrient concentrations
and possibly higher downstream primary production. Nutri-
ent concentrations shallower than the core of the mode water
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Fig. 7. Bivariate plot of euphotic zone integrated primary produc-
tion (mmol C m−2 d−1) vs. winter NAO index. Solid line is the
least squares Model II regression and the dashed lines are the are
95% confidence intervals. Correlation is significant at the P< 0.02
level.

(mode water core is atσθ∼26.4 kg m−3), but still within
the mode water do not show any significant trend with time
(filled symbols Fig. 2). Perhaps this is due to the discrepancy
in depths between the mode water core and MLD, or that
perhaps the shift in the NAO is not strong or constant enough
to impart the effect hypothesized by Palter et al. Thus, this
non-local phenomenon seems to be of minor importance in
explaining the observed patterns.

If our hypothesis is correct, that negative anomalies in the
NAO result in more continuous mixing of the upper ocean
supporting the increase in primary production and biomass
accumulation, then why are diatoms declining (alternatively,
why is Synechococcusincreasing)? There are several pos-
sible explanations. First, in the Sargasso Sea, silica uptake
by diatoms may be chronically substrate limited (Brzezin-
ski and Nelson, 1996) thereby restricting their ability to re-
spond to enhanced mixing and nutrient inputs. Silicate gra-
dients are lower in the upper 250 m of the Sargasso Sea than
NO−

3 gradients such that mixing to depth will entrain rel-
atively more NO−

3 , thus exacerbating potential silica limi-
tation. In contrast,Synechococcuspopulations in the Sar-
gasso Sea have been shown to respond to nanomolar level
NO−

3 pulses by increasing net growth rates and most impor-
tantly for this discussion, accumulating biomass (Glover et
al., 2007). Mourino-Carballido (2009) have also shown than
Synechococcusis relatively more abundant in regions of cy-
clone/anticyclone interaction, where vertical nutrient pump-
ing might be intensified. Second, salinity normalized DIC
concentrations in the Sargasso Sea have been increasing at
0.80± 0.06 µmoles kg−1 yr−1 with a consequent acidifica-
tion of the surface ocean (Bates, 2007). Recent CO2 ma-
nipulation studies in other ocean regions show that under el-
evatedpCO2 conditions diatoms are out competed by pico-

and nano-phytoplankton when macronutrients are depleted
(Hare et al., 2007) but that diatoms out compete pico- and
nano-phytoplankton when nutrients are replete (Riebesell et
al., 2007). While, both diatoms andSynechococcusboth
have enhanced growth rates under elevatedpCO2 (Fu et al.,
2007; Riebesell et al., 1993) macronutrient limitation likely
offsets these gains in diatoms, thus allowingSynechococcus
to gain a competitive growth advantage. Lastly, common
vertical migrators in the Sargasso Sea show a strong pref-
erence for grazing on diatoms relative to other co-occurring
phytoplankton (Schnetzer and Steinberg, 2002b). Given the
increase in daytime mesozooplankton biomass (Fig. 5), it is
probable that grazing pressure on diatoms will also have in-
creased from 1996–2007 potentially contributing to the de-
cline in diatom abundance. A fraction of the mesozooplank-
ton biomass increase is due to diel vertical migrators that
are resident in the mesopelagic zone during the day (Madin
et al., 2001; Steinberg et al., 2000), but active and passive
POC fluxes attributed to vertically migrating mesozooplank-
ton range from 3–18% (Schnetzer and Steinberg, 2002a) with
a long-term average closer to 6% (Lomas et al., 2002). While
they may be important in diatom population dynamics, their
contribution to export flux appears insufficient to account for
the observed 60% increase POC flux. Consequently a mecha-
nistic understanding of the role of vertically migrating meso-
zooplankton is incomplete at this time.

In contrast to some model predictions (Bopp et al., 2005;
Laws et al., 2000), data presented here for the Sargasso Sea
shows that shallow POC export increases with a shift to
smaller phytoplankton. This observation, in conjunction with
the discussion of zooplankton in the previous paragraph, sug-
gests that particle aggregation in relatively low biomass envi-
ronments may be an underappreciated process in the “pack-
aging” of particles as they leave the euphotic zone in the
oligotrophic North Atlantic (Jackson et al., 2005). Indeed,
these ideas are at the heart of two competing ideas linking
phytoplankton community composition and POC export. It
is a long-held belief that regions of efficient and high ab-
solute POC export rates are dominated by diatoms and coc-
colithophores and that these groups contribute disproportion-
ately to these high fluxes. This is in part due to the mineral
tests encasing these groups that act to increase settling rate,
and therefore decrease contact time in the biological active
upper ocean (Armstrong et al., 2002). As a result model pre-
dictions of the future strength of the biological carbon pump
appear to be inextricably linked to changes in the abundance
of diatoms. Interestingly, Emerson et al. (2001) suggest that
per unit area oligotrophic systems, which are dominated by
the biomass of small cells not diatoms, can have annual POC
export rates similar to subpolar regions. This supports the
recent hypothesis that all phytoplankton contribute to carbon
export rates out of the euphotic zone in proportion to pri-
mary production, although specific export mechanisms may
differ (Richardson and Jackson, 2007). If aggregation were
a significant process in the Sargasso Sea biological carbon
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pump, it could explain both the increase in POC flux with
smaller phytoplankton and enhanced remineralization within
the upper mesopelagic zone. Unfortunately data on aggre-
gate abundance, or other descriptive characterizations of flux
material, are not available at this time for the Sargasso Sea
that would allow a more complete evaluation of this hypoth-
esis.

5 Global implications

The findings presented here suggest there may be long time-
scale, climate-related shifts in phytoplankton community
composition in the subtropical North Atlantic that have sig-
nificant, and perhaps unanticipated, implications for the pro-
duction and export of POC in this oligotrophic gyre. A sim-
ilar climate-related shift in phytoplankton community com-
position and increase in TChl-a and primary production has
been observed in the North Pacific (Karl et al., 2001), sug-
gesting the possibility of observed biological responses to
climate forcing in the broader subtropical oceans. However,
there is a difference in that stratification was not shown to in-
crease in the Sargasso Sea as it did in the North Pacific along
with the increase in primary production, and therefore the
exact physical mechanism may differ between the two olig-
otrophic gyres. The data presented here suggests that in the
oligotrophic North Atlantic there is a tight coupling between
enhanced biological production and carbon export from the
euphotic zone and its attenuation in the mesopelagic such
that they increase in concert following a shift in the winter-
time NAO index that enhances vertical mixing.

Regional variability ofTeff within the mesopelagic is
not well constrained (Buesseler et al., 2007), and in no
model that we are aware of doesTeff change temporally
with euphotic and mesopelagic zone processes. If the
data at the HOT (Karl et al., 2001) and BATS are repre-
sentative of the broader oligotrophic gyres, and assuming
they contribute∼60% of the global shallow export pro-
duction of 11 Pg C yr−1 (Laws et al., 2000), not account-
ing for the decrease inTeff would result in an overestima-
tion of POC sequestration below 300 m of 2.3 Pg C yr−1.
For reference, global anthropogenic CO2 emissions are 6–
7 Pg C yr−1. While the uncertainties on this calculation are
quite large, it highlights that not accounting for tight coupling
between metabolic activities in the euphotic and mesopelagic
zones, or assuming that the oligotrophic gyre biological car-
bon pumps are static, can have a substantial impact of our
understanding of the oceans role in carbon sequestration.
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